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Abstract

Both resistance and tolerance, which are two strategies that plants use to limit biotic stress, are affected by the abiotic
environment including atmospheric CO2 levels. We tested the hypothesis that elevated CO2 would reduce resistance (i.e.,
the ability to prevent damage) but enhance tolerance (i.e., the ability to regrow and compensate for damage after the
damage has occurred) of tomato plants to the cotton bollworm, Helicoverpa armigera. The results showed that elevated CO2

reduced resistance by decreasing the jasmonic acid (JA) level and activities of lipoxygenase, proteinase inhibitors, and
polyphenol oxidase in wild-type (WT) plants infested with H. armigera. Consequently, the activities of total protease, trypsin-
like enzymes, and weak and active alkaline trypsin-like enzymes increased in the midgut of H. armigera when fed on WT
plants grown under elevated CO2. Unexpectedly, the tolerance of the WT to H. armigera (in terms of photosynthetic rate,
activity of sucrose phosphate synthases, flower number, and plant biomass and height) was also reduced by elevated CO2.
Under ambient CO2, the expression of resistance and tolerance to H. armigera was much greater in wild type than in spr2 (a
JA-deficient genotype) plants, but elevated CO2 reduced these differences of the resistance and tolerance between WT and
spr2 plants. The results suggest that the JA signaling pathway contributes to both plant resistance and tolerance to
herbivorous insects and that by suppressing the JA signaling pathway, elevated CO2 will simultaneously reduce the
resistance and tolerance of tomato plants.
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Introduction

In the last 250 years, atmospheric carbon dioxide (CO2) has

risen from 280 ppm to greater than 390 ppm, and is anticipated to

reach at least 550 ppm by year 2050 [1]. Because elevated CO2

increases the carbon to nitrogen (C:N) ratio and reduces the N

content in the tissue of most plant species, elevated CO2 is

expected to alter plant synthesis of phenolics, terpenes, and other

secondary metabolites [2,3]. Such changes in C:N and in the

content of secondary metabolites will alter the nutritional quality

and palatability of host plants for herbivores and could therefore

affect the performance of herbivorous insects [4].

Plants have evolved a variety of mechanisms to reduce the

negative impacts of herbivory [5,6]. When damaged by herbiv-

orous insects, plants can produce herbivore-deterrent metabolites

or defensive proteins to limit the damage [7]. This kind of induced

defense (i.e., resistance) is energy and resource costly, however,

and cannot be maintained at high levels throughout the growing

season [8]. An alternative to resistance is tolerance, which

compensates for tissue loss after insect attack [9]. In expressing

tolerance, plants reallocate energy and resources from undamaged

to damaged tissues (for example, by increasing sucrose-transport

enzymes in the damaged tissues) and increase photosynthetic rates

and growth parameters [10,11]. Although researchers generally

assume that there is a trade-off between resistance and tolerance

(i.e., plants with high resistance have low tolerance and vice versa),

the relationship between plant resistance and tolerance to

herbivores varies among studies and often depends on the plant

species, soil resource, and environment [12,13].

Elevated CO2 is likely to increase constitutive levels of defensive

metabolites, including phenolics and tannins, in plant leaves [2,14],

and such increases in phenolics and tannins have an negative

influence on the development and fitness of chewing herbivorous

insects [15]. However, the induced phenolic compounds are

decreased by elevated CO2 when responding to damage of insect

[16]. Additionally, jasmonic acid (JA) signaling defense (JA is
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considered as the most important defense hormone involved in

resistance against chewing insects) has been reported to be

suppressed by elevated CO2 [17], and CO2-induced decreases in

the expression of downstream genes of JA pathway (i.e., proteinase

inhibitors) increased the consumption of soybean leaves by

herbivorous insects [18].

Little is known about how CO2 affects plant tolerance to herbivores

but the possible effects of resource availability on tolerance have been

described by three classic models or hypotheses. The compensatory

continuum hypothesis (CCH) predicts that plants growing in resource-

rich or low-competition environments will be more tolerant to

herbivores than those growing in resource-poor, stressful environ-

ments [19]. The main rival to the CCH is the growth rate model

(GRM), which predicts that plants grow at a low relative growth rate

will be more tolerant than plants grow at a high relative growth rate,

because, unlike plants growing in stress-free environments, plants

growing in stressful environments are not growing at their maximum

rate and therefore have the potential to increase their growth rate [19].

The limiting resource model (LRM) predicts that tolerance will

depend on the particular resource that is limiting plant fitness and how

acquisition of that resource is affected by herbivory; according to the

LRM, the relative effects of a stressful vs. a stress-free environment on

tolerance will therefore depend on the nature of the resource [20].

Some researchers have reported that elevated CO2 increased

plant susceptibility to herbivorous insects [21,22,23], while others

found that elevated CO2 increased compensatory growth in

response to artificial herbivory, i.e., in response to researcher

removal of buds from cotton plants [24,25]. Elevated CO2 could

possibly affect the re-growth ability or tolerance by increasing C:N

and by decreasing the N concentration of plant tissues [26].

Although research has established that JA plays a crucial role in

plant resistance to herbivorous insects [27] and that plant

tolerance and resistance are not independent [13], it is still

unclear how tolerance is affected by the JA signaling pathway and

how the JA signaling pathway, and therefore resistance and

tolerance, are affected by elevated CO2.

Using the cotton bollworm, Helicoverpa armigera, and tomato, the

current study investigated the relationships between elevated CO2,

insect herbivory, the JA pathway, and plant tolerance and

resistance. Helicoverpa armigera is a leaf-chewing insect that causes

great damage to cotton, tomato, and many other crops in Northern

China [28]. To determine whether elevated CO2 influenced

resistance and tolerance of tomato plants by affecting the JA

pathway, we used the JA pathway-impaired mutant spr2. We tested

the hypothesis that, by altering the JA signaling pathway, elevated

CO2 would reduce tomato plant resistance (the ability to prevent

damage) against H. armigera while enhancing plant tolerance (the

ability to re-grow after H. armigera damage). Our specific aims were

to determine (1) whether elevated CO2 affects the JA-dependent

defense of tomato plants and the midgut enzyme activities of cotton

bollworm associated with different tomato genotypes, and (2)

whether elevated CO2 affects tolerance (in terms of re-growth

ability, as indicated by photosynthetic rate, sucrose phosphate

synthases, sucrose synthases, biomass, flower number, height, and

branch length) of wild-type and spr2 plants after H. armigera damage.

Materials and Methods

Open-top chambers
This experiment was carried out using eight octagonal, open-top

chambers (OTC), each 4.2 m in diameter, located at the

Observation Station of the Global Change Biology Group, Institute

Figure 1. Experimental design and replications. A flow diagram of the design used for the plant treatments, tissue collection and replications.
There were two CO2 levels, two plant genotypes, two insect treatments and four OTC replications for plant treatments.
doi:10.1371/journal.pone.0041426.g001
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of Zoology, Chinese Academy of Science (CAS) in Xiaotangshan

County, Beijing, China (40u119N, 116u249E). The atmospheric

CO2 concentration treatments were: (1) current atmospheric CO2

levels (375 ml/L) (‘‘ambient CO2’’), and (2) doubled ambient CO2

levels (750 ml/L) (‘‘elevated CO2’’). Four OTCs were used for each

CO2 concentration treatment. During the period from seedling

emergence to the harvesting of tomato plants, CO2 concentrations

were monitored and adjusted with an infrared CO2 analyzer

(Ventostat 8102; Telaire, Goleta, CA, USA) once every 20 min to

maintain the CO2 concentrations. The automatic-control system for

adjusting the levels of CO2 concentration, as well as specifications

for the OTC, are detailed in Chen and Ge [29].

Tomato plants
Wild-type (WT) tomato plants (Lycopersicum esculentum cv.

Castlemart) and jasmonate-deficient mutant plants (spr2) were

kindly provided by Professor C. Li of the Institute of Genetics and

Developmental Biology, the Chinese Academy of Sciences. The

JA-biosynthesis mutant, suppressor of prosystemin-mediated

responses2 (spr2), reduces chloroplast v3 fatty acid desaturase,

which impairs the synthesis of JA [30]. WT tomato was the parent

for the spr2 mutant. After they had grown in sterilized soil for 2

weeks, the tomato seedlings were individually transplanted into

large plastic pots (20 cm diameter and 22 cm height) containing

sterilized loamy field soil (organic carbon, 25 g/kg; N, 500 mg/kg;

P, 200 mg/kg; K, 300 mg/kg) and placed in OTCs on 23 May

2010. Each OTC contained 40 plants. Pots were rearranged

randomly within each OTC once every week. No chemical

fertilizers and insecticides were used. Water was added to each pot

once every 2 days.

Herbivore treatment
In its native habitat in China, Helicoverpa armigera is one of the

most abundant of the lepidopteran herbivores on L. esculentum cv.

Figure 2. Growth parameters of two tomato genotypes grown under ambient and elevated CO2 without H. armigera infestation. (A)
Photosynthetic rate (A), (B) biomass, (C) root biomass: shoot biomass ratio (R:S), (D) cumulative flower number, (E) plant height, and (F) total branch
length. Each value represents the average (6SE) of 20 replicates. Different lowercase letters indicate significant differences between CO2 level within
the same tomato genotype (LSD test: d.f. = 3.12; P,0.05). Different uppercase letters indicate significant differences between WT plants and spr2
plants within the same CO2 level (LSD test: d.f. = 2.9; P,0.05).
doi:10.1371/journal.pone.0041426.g002
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Castlemart. H. armigera larvae tend to attack leaves and fruits.

Thirty-six days after the tomato plants had been placed in the

OTCs, 40 plants of each genotype at each CO2 level ( = 10 plants

per OTC) were randomly selected and infested with H. armigera.

Six 4th-stage H. armigera larvae were placed on each of two leaves

at mid-plant height, and the leaves were caged (80 mesh gauze);

corresponding leaves of control plants were caged in the same way.

After 2 days, the larvae were removed and were weighed and

analyzed for midgut proteases as described later in the Methods.

The leaves of eight randomly selected plants infested with larvae

and of eight noninfested plants were harvested and immediately

stored in liquid nitrogen (Fig. 1).

Plant photosynthesis
Net photosynthetic rate was determined in the presence or

absence of herbivores on four 5-week-old plants for each genotype

at each CO2 level. Gas exchange was measured on the distal

portion of the leaf blade of undamaged leaves using a Li-6400 with

a red/blue LED light source (6400-02B; Li-Cor, Lincoln, NE,

USA). The CO2 concentration of the incoming air was adjusted to

400 mmol mol21 CO2 or 750 mmol mol21. Relative humidity

corresponded to ambient conditions. Before gas exchange was

measured, photosynthetic active radiation (PAR) for the leaf in the

measuring cuvette was increased in steps to 1200 mmol m22 s21.-

When the CO2 assimilation rate was stable for at least 2 min, a

light response curve was recorded. Measurements were carried out

after herbivores had been allowed to feed on plants for 2 days.

JA measurement
A 0.5 g sample of fresh leaves was ground to a fine powder on

ice. The powder was mixed with 4 ml of 80% methanol (80

methanol/20 water, V/V) and kept at 220uC for 12 h, and then

added to 6 ml of [9,10]-dihydro-JA (dihydro-JA) for use as an

internal standard. The total extracted preparation was centrifuged

at 8,000 g for 20 min. The condensed endogenous JA were

extracted according to procedures described by ren et al., [31].

Endogenous JA and its internal standards (dihydro-JA) were

analyzed using full GC/MS scans. Retention times were identified

using Xcalibur 1.2, the NIST 2003 mass library. Endogenous JA

was measured by GC-MS selected ion monitoring (SIM). The

characteristic ions (m/z) were 151/224 for JA and 153/226 for the

internal standard (dihydro- JA).

Plant enzyme activity (SPS, SS, LOX, PIs, PPO, POD, and
PAL)

For analyses of sucrose synthases (SS) and sucrose phosphate

synthases (SPS), 0.5 g of fresh tomato leaves was homogenized for

1.5 min at 4uC in 1:10 (fresh weight/buffer volume ratio) 100

mMphosphate buffer, pH 7.4, containing 100 Mm KCl and

1 mM EDTA. Homogenates were centrifuged at 10 000 g for

10 min, and the supernatants were subjected to SS and SPS

analysis. SS and SPS were analyzed according to the protocol of

the reagent kit (Nanjing Jiancheng Bioengineering Institute,

Nanjing, Jiangsu Province, China).

About 0.1 g of frozen leaf tissue was used for determination of

plant defensive enzyme activity, including the activities of

lipoxygenase (LOX), proteinase inhibitors (PIs), polyphenol

oxidase (PPO), peroxidase (POD), and phenylalanine ammonia

lyase (PAL). Extract was obtained from individual leaflets by

grinding them in a 50 mM Tris HCl buffer (pH 7.8, 3 ml/g of leaf

tissue) containing 7% polyvinylpolypyrrolidine, 1.67 mM phenyl-

thiourea, 0.3 M KCl, and 0.4 mM ascorbic acid. This extract was

immediately frozen for later use. For assays, the thawed extract

was centrifuged at 13,000 g for 10 min, and enzyme activity was

measured in the supernatant. LOX assays were performed in a 1-

ml reaction mixture containing 20 ml of supernatant and 980 ml of

reaction buffer. The reaction buffer consisted of 0.113 g of linoleic

acid, which had been dissolved in 3 ml of methanol in 100 ml

pH 7.8 Tris-HCl buffer (w/v, pH 7.0), and 800 ml of Tween-20.

PIs were measured as in Thaler et al. [32]. PPO activity was

measured as in Mahanta et al. [33]. POD activity was determined

according to Tegelberg et al. [34]. Reaction mixtures for

determination of PAL activity contained 950 ml of 0.02 mM L-

phenylalanine (0.33 g of L-phenylalanine dissolved in 100 mL of

Tris-HCl, pH 7.8) and 50 ml of supernatant. The changes in

absorbance were detected with a spectrophotometer at 290 nm

(SPEKTRAmaxHPlus; Molecular Devices, Sunnyvale, California,

USA).

Midgut proteases of H. armigera
After they had fed on plants for 48 h, 30 larvae of uniform size

from each treatment were selected. Larvae were anaesthetized by

chilling on ice, and their midguts were removed. The midgut tissue

was cut longitudinally, and the external surface of the midgut

tissue was cleaned by placing it in 0.15 mol/L NaCl. Finally, the

tissues were stored at 280uC.

All enzyme substrates were obtained from Sigma-Aldrich. Weak

alkaline trypsin-like enzyme (WATE) activity with Na-tosil-L-

arginin methyl ester (TAME) substrates was assayed spectropho-

tometrically at 248 nm according to the methods of Erlanger et al.

Figure 3. Activity of sugar transport enzymes in leaves of two
tomato genotypes grown under ambient and elevated CO2

without H. armigera. (A) sucrose phosphate synthase (SPS) activity,
and (B) sucrose synthase (SS) activity. Each value represents the average
(6SE) of four replicates. Different lowercase letters indicate significant
differences between CO2 level within the same tomato genotype (LSD
test: d.f. = 3.12; P,0.05). Different uppercase letters indicate significant
differences between WT plants and spr2 plants within the same CO2

level (LSD test: d.f. = 2.9; P,0.05).
doi:10.1371/journal.pone.0041426.g003
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[35]. The substrates were initially dissolved in dimethyl formamide

(DMF) and further dissolved in 20 mM Tris–HCl buffer, pH 8.5.

Active alkaline trypsin-like enzyme (AATE) activity was

measured according to Erlanger et al. [35] by using N-benzoyl-

DL-arginin-r-nitroanilide (BApNA) and 7.5% (v/v) dimethyl

sulfoxide (DMSO) dissolved in Glycine-NaOH buffer (0.1 mM,

pH 10.5) at a final concentration of 1.4 mM. The mixtures were

incubated for 20 min at 30uC, and the reactions were stopped by

adding 0.5 ml of 30%(v/v) acetic acid. The enzyme activity was

measured at 406 nm.

Chymotrypsin activity in extracts was determined spectropho-

tometrically according to Blackwood et al. [36], based on the

hydrolysis of N-benzoyl-L-tyrosin ethyl ester (BTEE), which was

determined at 256 nm (l M in 10% (v/v) methanol with 0.15 M

NaC1). Tris-HCl buffer (0.2 M, pH 8.5) was used. One unit of

enzyme activity was defined as 1 mol of BTEE hydrolyzed per

min. The extinction coefficient of BTEE was 964.

Total protease was measured with azocasein as the substrate.

Azocasein (20 mg ml21) was dissolved in 0.15 M NaC1. The

sample was then dissolved in 0.2 M glycine-NaOH buffer

(pH 8.0). The reaction was run by adding 300 ml of reaction

buffer to 0.3 ml of the azocasein solution and incubating the

mixture for 24 h at 30uC. The reaction was stopped by adding

0.6 ml of 20% (W/V) trichloroacetic acid (TCA). Samples from

each time point were centrifuged at 10000 g for 15 min at 4uC,

and the absorbance of the supernatant was measured once at

366 nm. One absorbance unit from the mixture was defined as

one unit of azocasein under the given assay conditions.

Mean relative growth rate of H. armigera
H. armigera larvae were weighed with an automatic electro-

balance before and after they had fed on tomato plants. Mean

relative growth rate (MRGR) was calculated following Chen et al.

[37]: MRGR = (ln W22ln W1)/t, where W1 is the initial weight;

Figure 4. Chemical defensive components in two tomato genotypes grown under ambient (AM) and elevated CO2 (EL) without and
with H. Armigera (+HA). (A) JA content, and the activity of (B) lipoxygenase (LOX), (C) proteinase inhibitors (PIs), (D) polyphenol oxidase (PPO), (E)
peroxidase (POD), and (F) phenylalanine ammonia lyase (PAL). Each value represents the average (6SE) of four replicates. Different lowercase letters
indicate significant differences among combinations of H. armigera and CO2 level within the same tomato genotype (LSD test: d.f. = 3.12; P,0.05).
Different uppercase letters indicate significant differences between WT plants and spr2 plants within the same CO2 (LSD test: d.f. = 2.9; P,0.05).
doi:10.1371/journal.pone.0041426.g004
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W2 is the final weight; and t is the time in days between weighings.

For each combination of genotype and CO2 level, 85 larvae were

weighed.

Resistance and tolerance analysis
The following variables were considered to be measures of

resistance: the activities of LOX, PIs, PPO, POD, and PAL in

plants; the activities of midgut enzymes in H. armigera; and the

MRGR of H. armigera.

Tolerance was measured by comparing the parameters on

plants that were or were not exposed to H. armigera and that were

exposed to ambient or elevated CO2. In the short term, the

following variables were considered to be measures of tolerance:

photosynthetic rate, sucrose phosphate synthases and sucrose

phosphate synthases. In the long term, the following variables were

considered to be measures of tolerance (i.e. re-growth ability): total

branch length per plant, plant height, cumulative number of

flowers per plant, and final root and shoot mass. These data were

obtained 60 days after the larvae had been added from five plants

from each combination of genotype and herbivore treatment per

OTC ( = 20 plants per OTC and 160 plants in total).

JA content was considered to be one measure of both tolerance

and resistance.

Statistical analysis
A split-split plot design was used to analyze the univariate

responses of the measured variables (i.e., plant traits, chemical

components, phytohormones) (ANOVA, PASW, 2009). In the

following ANOVA model, CO2 and block (a pair of OTCs with

ambient and elevated CO2) were the main effects, tomato

genotype was the subplot effect, and herbivore level was the sub-

subplot effect:

Xijklm~mzCizB Cð Þj ið ÞzGkzCGikzGB Cð Þkj ið ÞzHl

zCHilzHB Cð Þlj ið ÞzGHB Cð Þklj ið Þzem ijklð Þ

where C is the CO2 treatment (i = 2), B is the block (j = 4), G is the

tomato genotype (k = 2), and H is the herbivore treatment (l = 2).

Figure 5. Activities of digestive proteases in the guts of H. armigera that fed for 2 days on tomato genotypes grown under ambient
and elevated CO2. (A) total protease, (B) chymotrypsin (CTE) activity, (C) weak alkaline trypsin-like enzyme (WATE) activity, and (D) active alkaline
trypsin-like enzyme (AATE) activity. Each value represents the average (6SE) of four replicates. Different lowercase letters indicate significant
differences between ambient CO2 and elevated CO2 treatment. Different uppercase letters indicate significant differences between feeding on the
WT plants and spr2 plants within the same CO2.
doi:10.1371/journal.pone.0041426.g005

Figure 6. Mean relative growth rate (MRGR) of H. armigera that
fed for 2 days on tomato genotypes grown under ambient and
elevated CO2. Each value represents the average (6SE) of 85
replicates. Different lowercase letters indicate significant differences
between ambient CO2 and elevated CO2 treatment. Different uppercase
letters indicate significant differences between feeding on WT plants
and spr2 plants within the same CO2 treatment.
doi:10.1371/journal.pone.0041426.g006
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Xijklm represents the error because of the smaller scale differences

between samples and variability within blocks (ANOVA, SAS

institute, 1996). Effects were considered significant if P,0.05. The

effect of block and the interactive effects of block and other factors

were not significant (P.0.45), and the effect of block and its

interaction with other factors are not presented so as to simplify

the presentation. Least significant difference (LSD) tests were used

to separate means when ANOVAs were significant. For quanti-

fying the midgut protease and weight of H. armigera on different

tomato genotypes under two CO2 levels, a split-plot design was

also applied, with CO2 and block as the main effects and tomato

genotype as the subplot effect. R software (version 2.15.0, http://

Figure 7. Tolerance (as indicated by differences in values of growth traits or enzyme activities between damaged plants and
undamaged plants) of two tomato genotypes grown under ambient and elevated CO2. Damaged plants are those that were fed on by H.
armigera. (A) photosynthetic rate (A), (B) sucrose phosphate synthase (SPS), (C) sucrose synthase (SS), (D) biomass, (E) root biomass: shoot biomass
(R:S), (F) cumulative flower number, (G) plant height, and (H) total branch length. Each value represents the average (6SE) of 20 replicates. Symbols
above columns indicate levels of significant differences between variables of damaged and undamaged plants (*, P,0.05). Positive differences
indicate that values were greater for damaged plants than for undamaged plants.
doi:10.1371/journal.pone.0041426.g007

CO2 Affects Resistance and Tolerance of Tomato
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www.r-project.org/) was used to calculate the standard error of the

difference value of parameters between herbivore infested and

uninfested treatment.

Results

Photosynthesis and growth
Relative to ambient CO2 and in the absence of H. armigera,

under elevated CO2, the photosynthetic rate were significantly

increased by 87.9% and 43.8%, biomass by 31.6% and 19.8%,

flower number by 51.1% and 53.0%, total branch length by

27.5% and 31.8%, and plant height by 56.7% and 44.5% for WT

and spr2 plants, respectively. The root to shoot ratio (R:S) were

significantly decreased by 27.2% for WT plants and by 8.2% for

spr2 plants under elevated CO2 (Fig. 2).

SPS and SS activity
Relative to ambient CO2 and in the absence of H. armigera, SPS

activity were significantly increased by 2.2-fold for WT plants and

by 4.4-fold for spr2 plants under elevated CO2 (Fig. 3A) but SS

activity of either WT or spr2 plants were not affected (Fig. 3B). SPS

and SS activities were unaffected by genotype (Fig. 3).

JA level and defense enzyme activity
Genotype, H.armigera infestation, the interaction between CO2

and genotype, the interaction between genotype and H.armigera

infestation, as well as the interaction among CO2 level, genotype

and H.armigera infestation, significantly affected plant JA content

(Table S1). JA levels and LOX, PI, and PPO activities of WT

plants were decreased when damaged by H. Armigera under

elevated CO2 (Fig. 4A–D). Elevated CO2 also decreased LOX and

PI activity of undamaged WT plants. POD and PAL activity of

undamaged plants in both genotypes were higher under elevated

CO2 (Fig. 4E, F).

H. armigera significantly increased the levels of JA and all

defensive proteins in WT plants under ambient CO2 (Table S1,

Fig. 4). Under elevated CO2, in contrast, H. armigera only increased

JA levels and PI activity in WT plants.

Midgut proteases and weight of H. armigera
Total Proteolysis was affected by CO2 and the interaction

between CO2 and genotype (Table S2). H. armigera that consumed

leaves of WT plants grown under elevated CO2 had substantially

higher gut protease activities than those that consumed leaves of

WT plants grown under ambient CO2 (Table S2, Fig. 5).

However, elevated CO2 did not affect gut protease activity in H.

armigera that consumed spr2 foliage. Under ambient CO2, H.

armigera that consumed leaves of WT plants had higher total

protease and CTE activity than those that consumed spr2 foliage

(Fig. 5A, B). Moreover, H. armigera that consumed leaves of WT

plants had a lower MRGR than those that consumed spr2 foliage

under ambient CO2 (Fig. 6).

Regrowth and sucrose transportation after H. armigera
attack

For WT plants under ambient CO2, H. armigera increased the

photosynthetic rate and SPS and SS activities but did not

significantly affect biomass, flower number, height, and total

Figure 8. The major results and conclusion of this study were summarized. Elevated CO2 decreased resistance and tolerance of WT to H.
armigera. In contrast, the resistance and tolerance of spr2 were not changed by elevated CO2. Elevated CO2 reduces the resistance and tolerance of
WT plants by suppressing the JA signaling pathway.
doi:10.1371/journal.pone.0041426.g008
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branch length. For WT plants under elevated CO2, however, H.

armigera not only reduced the photosynthetic rate but also

decreased plant biomass by 13.7% and flower number by 24.9%

(Fig. 7D, F). For spr2 plants under ambient CO2, H. armigera

reduced plant biomass by 20.1%, flower number by 24.2%, and

plant height by 11.6% (Fig. 7D, F, G). For spr2 plants under

elevated CO2, H. armigera reduced plant biomass by 18.8%, flower

number by 33.8%, and total branch length by 14.6% (Fig. 7D, F,

H). In addition, H. armigera increased the R:S of both genotypes

under both CO2 levels (Fig. 7E).

Discussion

The effects of elevated CO2 on resistance and tolerance
ability of tomato plants to H.armigera attack

Many studies have evaluated the relationship between plant

resistance and tolerance to herbivores [38,39], but little informa-

tion is available regarding how the relationship between tolerance

and resistance is affected by an abiotic stress such as global CO2

enrichment. Our results suggested that elevated CO2 decreased

tomato plant resistance against H. armigera by suppressing the

critical defensive signal molecule JA and JA-pathway-related

defensive enzymes. Our results also indicated that tomato plants

grown under elevated CO2 are less tolerant to H. armigera than

plants grown under ambient CO2. Phenotypic plasticity is a

principal means by which plants cope with biotic or abiotic stress

[40], and the decreased resistance and tolerance to herbivores

under elevated CO2 in this study suggests that elevated CO2

reduces the phenotypic plasticity of plant response to herbivorous

insect attack.

Prior studies have revealed that elevated CO2 increases total

nonstructural carbohydrates in plant tissues and that the excess C

is probably allocated to the increased synthesis of secondary

metabolites, such as terpenes and phenolics [41,42], which in turn

can reduce the development of chewing insects [43]. Furthermore,

PAL is known to be a principle enzyme involved in a rate-limiting

step of phenolic biosynthetic process [41]. Our results with both

genotypes of tomato plants were consistent with the previous

finding that elevated CO2 increases PAL activity in plants (Fig. 4F).

Generally, attack by chewing insects induces a complex set of

defense responses in plants [44]. In WT plants under ambient

CO2, H. armigera attack increased anti-oxidant enzymes (in terms

of POD), followed by triggered JA signaling pathway defense (in

terms of JA and LOX) and caused plants to increase PIs and PPO

activities (Fig. 4A–E). To the undamaged WT plants, elevated

CO2 decreased LOX and PIs activity. Additionally, when

damaged by H.armigera, elevated CO2 reduced LOX activity and

JA level as well as PI and PPO activity in WT plants (Fig. 4A–D).

It seems that elevated CO2 tends to impair the JA-dependent

defense induced by H. armigera. Although responses to elevated

CO2 by plants and insects are species-specific [14], the current

results are not the first to show that elevated CO2 changes the

plant–insect interaction by modifying the JA-dependent pathway.

In soybean plants, elevated CO2 also suppressed the JA signaling

pathway and increased susceptibility to the Japanese beetle, Popillia

japonica [17,18].

Proteinase inhibitors (PIs) of plants are able to reduce the

feeding fitness of chewing insects by suppressing insect gut

proteases [45]. WT plants grown under elevated CO2 had

reduced PI activity, the reduced resistance resulted in increased

gut protease activities for H. armigera (Fig. 5); these results may

explain our previous finding that H. armigera consumed more

wheat biomass when the wheat was grown under elevated vs.

ambient CO2 conditions [46]. Although increases in gut protease

activities may result in increased consumption under elevated

CO2, the H. armigera MRGR did not change (Fig. 6). Perhaps the

increased consumption only complemented feeding and enabled

the insect to maintain development and growth when consuming

leaves grown under elevated CO2, i.e., on leaves with a reduced N

concentration.

Plant tolerance to herbivorous insects can depend on the

availability of particular resources such as C resources [9].

Elevated CO2 increases C assimilation and causes re-allocation

of C (especially sucrose) in plant tissue [47]. In the transport of

sucrose from leaves to sink tissues via phloem, SPS and SS are key

regulatory enzymes [48]. Because elevated CO2 significantly

increases plant growth and C metabolism (Fig. 2), the CCH

hypothesis would predict that plant tolerance to herbivores would

be increased in the resource-rich, elevated-CO2 environment. The

CCH hypothesis, however, was not supported by the current

study. Under ambient CO2, WT plants expressed substantial

tolerance to H. armigera attack in that herbivory increased C

assimilation and sucrose synthesis (as indicated by SPS activity in

leaves) and transportation (as indicated by SS activity in roots)

such that plant biomass and other parameters measured at week 8

did not differ between plants with and without H. armigera

infestation. This suggests that WT plants can completely

compensate for H. armigera damage under ambient CO2. Under

elevated CO2, in contrast, H. armigera consumption of WT plants

reduced photosynthesis, biomass, flower number, and plant height

and did not increase SPS and SS activity. We conclude that

elevated CO2 reduces the tolerance of WT tomato plants to H.

armigera. Furthermore, our results are consistent with the GRM

hypothesis, which predicts that plants growing under conditions

that promote a high growth rate will be less tolerant to herbivores

than plant growing under conditions that reduce the growth rate

[23].

The interaction between elevated CO2 and jasmonate
signalling

In addition to the essential role of the JA pathway in resistance

against herbivorous insects, JA has been found to regulate the

interaction between tolerance and resistance in Nicotiana attenuata

against Manduca sexta [49]. While WT plants in the current study

exhibited substantial tolerance against H. armigera under ambient

CO2, spr2 mutant plants did not, i.e., tolerance under ambient

CO2 was much lower in spr2 than in the WT (Fig. 7). This is

consistent with that finding that treatment of Populus with JA

increased C transport to the roots, nutrient uptake, and regrowth

capacity, and therefore increased tolerance [50]. Results concern-

ing the effect of the JA pathway on tolerance, however, have been

inconsistent. N. attenuata and its JA-deficient genotype (asLOX) did

not differ in capsule production after simulated herbivore attack

[9], and the tolerance to defoliation did not differ between WT

Arabidopsis and the overexpressing-JA genotype JMT [51]. This

indicates that tolerance to herbivorous insects may depend on

some mechanisms other than the JA pathway. Under elevated

CO2, the tolerance of spr2 plants to H. armigera was not lower than

WT plants except the total branch length (Fig. 7A–G). This result

confirmed that JA pathway plays an important role in tolerance of

plants when attacked by H.armigera under elevated CO2. Our study

suggests that the suppression of JA pathway may be one of reasons

why elevated CO2 decreased both resistance and tolerance of

tomato when damaged by H. armigera.

Conclusion
This study has generated a number of significant findings. First,

the results support the view that the JA signaling pathway is

CO2 Affects Resistance and Tolerance of Tomato
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important in both resistance and tolerance to chewing insects.

Second, the results are consistent with the GRM model, which

predicts that tolerance will be greater in resource-limited than in

resource-unlimited environments. Third, a trade-off between

resistance and tolerance as predicted by classical theory was not

evident in our study [52]. Finally and perhaps most importantly,

the results suggest that plants may suffer greater damage from

herbivorous insects if levels of atmospheric CO2 continue to

increase (Fig. 8).
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